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A semiclassical trajectory method, called the self-consistent decay of mixing~SCDM! method, is
presented for the treatment of electronically nonadiabatic dynamics. The SCDM method is a
modification of the semiclassical Ehrenfest~SE! method ~also called the semiclassical
time-dependent self-consistent-field method! that solves the problem of unphysical mixed final
states by including decay-of-mixing terms in the equations for the evolution of the electronic state
populations. These terms generate a force, called the decoherent force~or dephasing force!, that
drives the electronic component of each trajectory toward a pure state. Results for several mixed
quantum–classical methods, in particular the SCDM, SE, and natural-decay-of-mixing methods and
several trajectory surface hopping methods, are compared to the results of accurate quantum
mechanical calculations for 12 cases involving five different fully dimensional triatomic model
systems. The SCDM method is found to be the most accurate of the methods tested. The method
should be useful for the simulation of photochemical reactions. ©2004 American Institute of
Physics. @DOI: 10.1063/1.1648306#

I. INTRODUCTION

There is no totally consistent way to combine quantum
mechanics for a subset of the degrees of freedom of a system
with classical mechanics for the complementary subset. This
poses a challenge for semiclassical theories of non-Born–
Oppenheimer dynamics—i.e., electronically nonadiabatic
processes, where electronic motions are treated quantum me-
chanically, and nuclear motions are treated by classical or
quasiclassical methods.1–3 Consequently, a large number of
approximate methods for treating coupled electronic and
nuclear motions have been put forward; since several mono-
graphs and reviews1–14 are available, we will not include a
summary of all available methods here.

A formally appealing approach to treating such problems
is the semiclassical Ehrenfest~SE! method,8,10–19 in which
the potential governing the classical nuclear motion is the
expectation value of the Hamiltonian for the quantal degrees
of freedom; this is also called the time-dependent self-
consistent-field method or the time-dependent Hartree
method, and it is the most pristine member of a general class
of methods called mean-field methods or self-consistent-
potential methods. When the average potential for the quan-
tal degrees of freedom is computed from an ensemble of
trajectories, the method becomes inaccurate as the trajecto-
ries separate in space and the average becomes
meaningless.20 When the classical mechanical part of the
system is described by independent trajectories, the method
becomes more accurate,18 but the inability of a mixed
classical–quantum method to properly handle coherence and
decoherence remains a serious defect. In particular, the lack
of decoherence means that individual trajectories end in a
mixed state and the distribution of energy in the classical
degrees of freedom is not consistent with the quantized na-
ture of the quantal degrees of freedom. When the quantal

degrees of freedom are the electronic degrees of freedom of
a molecule, the energy spacings are often large compared to
the nuclear kinetic energies, and this inconsistency makes the
energy distributions qualitatively unreasonable. In a recent
paper,21 we introduced a decay-of-mixing method called
natural decay of mixing~NDM!, which includes decoherence
effects in the SE method by adding an artificial force term,
called the decoherent force. The decay-of-mixing method
employs a switching algorithm to determine the pure state
toward which the decoherent force drives the system. We
showed21 that the decay-of-mixing method gives more accu-
rate results than the SE method and is comparable in accu-
racy to or more accurate than Tully’s fewest switches~TFS!
version10,22 of the more popular trajectory surface hopping
~TSH! approach. Unlike TSH methods, the decay-of-mixing
trajectories never undergo discontinuous changes in mo-
menta.

The attractive features of the decay-of-mixing method
encouraged us to study it further, and in a later paper23 we
extended it to permit calculations in the adiabatic represen-
tation; this extension takes advantage of the adiabatic-to-
diabatic transformation, but the system decays to adiabatic
states, which is sometimes physically more reasonable than
decaying to diabatic states. In further work on a system with
a conical intersection,24 we found that the decay-of-mixing
method is much less sensitive to the choice of representation
than are TSH calculations, which is encouraging because an
accurate quantum mechanical calculation of the dynamics
would be independent of the representation.~Semiclassical
Ehrenfest trajectories are completely independent of
representation,15 which is one consideration in favor of this
approach, but as mentioned above, they predict unrealistic
product energy distributions because they do not end in a
pure state, a problem that is corrected in the decay-of-mixing
method by adding decoherence.! In the present article we
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introduce three improvements to the decay-of-mixing
method:

~i! We make the switching algorithm locally self-
consistent in the Ehrenfest~time-dependent Hartree!
sense.

~ii ! We present a more satisfactory choice for thedirec-
tion of the decoherent force.

~iii ! We introduce a new geometry dependence for the de-
coherence time that satisfies physically correct limits
for large and small kinetic energy.

Because these improvements make the method more
self-consistent and to emphasize that the method is an im-
proved version of the time-dependent self-consistent field
method,8,10–19the method is called the self-consistent decay
of mixing ~SCDM! method.

We note that decoherence, dephasing, and decay of mix-
ing all refer to the tendency of a coupled state system to
evolve into a statistical mixture25 of pure states. In the
present application the states in question are those labeling
the reduced electronic density matrix in which nuclear mo-
tion has been integrated out. We simulate this decoherence
by representing the quantum-mechanical wave packet as a
set of independent semiclassical trajectories. The ensemble
of semiclassical trajectories evolves to a set of pure states,
which, taken together, represent the statistical mixture of fi-
nal states of the quantum-mechanical system. Although there
is a close connection between physical decoherence or
dephasing and the algorithmic decay of mixing required for
the set of final states of the trajectories to simulate the final
state of the quantum-mechanical system, the reader should
keep in mind that the algorithmic demixing considered here
is not necessarily identical to physical decoherence. There-
fore the only check of whether the approximations we em-
ploy for treating the decoherence time are reasonable is to
compare the results of the semiclassical calculations employ-
ing our algorithm to accurate quantum dynamics. Further-
more, although the decoherence language is useful to empha-
size the connectionsbetween the decay of mixing and
decoherence, others might want to emphasize the distinctions
by replacing ‘‘decoherence,’’ ‘‘decoherent force,’’ and ‘‘de-
coherent state’’ by ‘‘decay of mixing,’’ ‘‘demixing force,’’
and ‘‘pure state,’’ respectively.

Dephasing refers to the physical effect of damping out
the coherence. Decay of mixing refers to the gradual switch-
ing from an SE trajectory to an ensemble of single-surface
trajectories. The electronic coherences are the off-diagonal
elementsr i j of the density matrix; when these are signifi-
cant, the resulting motion is best described by the fully co-
herent SE method. As the system dephases and these off-
diagonal elements tend to 0, the nuclear motion in the two
states is no longer coherent, and the SE trajectory may be
replaced with an ensemble of single-surface trajectories. It is
therefore reasonable that these two processes~one physical
and one algorithmic! occur at about the same rate.

We also direct the readers’ attention to recent papers by
Rossky and co-workers,26–28 which were the first papers to
elucidate the picture of the classical degrees of freedom serv-
ing as a ‘‘bath’’ that decoheres the electronic reduced density

matrix. In recent papers, Rossky and co-workers have also
formulated a self-consistent independent-trajectory method
that includes decoherence, with a special emphasis on sol-
vent effects.28,29 Ultimately one might be able to model de-
coherence better by a trajectory method where the quantum
evolution depends on a swarm of trajectories,30–32 but at
present such methods are less practical for complex systems,
and so we will not consider them further in the present paper.

In the present paper, in addition to introducing physical
improvements in the method, we present a new way of car-
rying out calculations in the adiabatic representation that
does not require knowing the adiabatic-to-diabatic transfor-
mation. We also reformulate the decay-of-mixing algorithm
in terms of density matrices. These reformations are conve-
nient in some cases, especially for the multistate case, where
a unitary transformation of the electronic Hamiltonian does
not in general correspond to a canonical transformation of
the classical-like particle representation.33

Although we discuss the NDM and SCDM methods as
hybrid quantum–classical methods, in practice we use quan-
tized initial conditions for the classical degrees of freedom.
This is usually called a quasiclassical treatment,2,34,35and in
this sense the hybrid methods can be called quantum and
quasiclassical.

Section II presents the new SCDM theory. Section III
presents test cases for three-dimensional atom–diatom colli-
sions. Section IV gives numerical details of the semiclassical
trajectory calculations. The remaining sections contain sys-
tematic tests of the methods, discussion, and concluding re-
marks.

II. THEORY

We will present the theory for both adiabatic and diaba-
tic representations. The matrix elements of the electronic
HamiltonianHel , including nuclear repulsion, are the poten-
tial energy surfaces and are calledUkk8 , where k and k8
label electronic states:

Ukk85^kuHeluk8&. ~1!

The number of states is calledm, so k51,2,...,m. We solve
the equations in an isoinertial, mass-scaled nuclear coordi-
nate systemR in which all nuclear masses are scaled to the
same reduced massm. The nonadiabatic couplingd is anm
3m anti-Hermitian matrix in state spacek, and each element
is a vector inR:

dkk85^ku¹Ruk8&. ~2!

The momentum conjugate toR is calledP. In the adiabatic
approximation,U is a diagonal matrix calledV, and in a
diabatic representation,dkk8 is neglected by definition.

In the present paper the diabatic representations are de-
fined as havingdkk8 equal to zero~which is possible for
realistic representations of strong-coupling regions, but
which could not be true for an exact treatment of the elec-
tronic motion36–38!. The nonadiabatic coupling vector in the
adiabatic representation is an important quantity even for
calculations carried out in the diabatic representation. When
the nonadiabatic coupling is neglected or defined to be zero
in the diabatic representation, then the nonadiabatic coupling
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in the adiabatic representation is derived entirely from the
diabatic-to-adiabatic transformation. In the rest of this paper,
dkk8 always refers to the part of the nonadiabatic coupling in
the adiabatic representation that comes from the diabatic-to-
adiabatic transformation. Sincedkk8 defined this way is large
in strong-coupling regions, we use it as a criterion of strong
coupling in both representations.

We remove the irrelevant straight-line motion of the cen-
ter of total mass, and the momentum may be written as39

P5Pvib1Prot , ~3!

wherePvib is the local vibrational momentum, andProt is the
linear momentum associated with the overall rotational mo-
tion. Note that for a collision process, the initialrelative
translational motion of the reagents is considered a vibra-
tional motion in this decomposition. The instantaneous vibra-
tional kinetic energy is given by

Tvib5
Pvib

2

2m
, ~4!

wherePvib is the magnitude ofPvib . The decomposition~3!
is presented in a previous article.39

As reviewed in the Introduction, the tendency of state
populations to evolve to a statistical mixture of pure states
~this tendency is called decay of mixing! is assumed to be
governed by the time for decay of the various electronic
coherences. Both processes are assumed to be first order and
to be governed by the same rate matrix. In particular, the
rates are determined by a matrix with elementstkk8 , which
are called the decay-of-mixing relaxation times; their recip-
rocals are first-order rate constants. The decay-of-mixing al-
gorithm is a modification of the semiclassical Ehrenfest
method,15 and the SE method is reviewed in Sec. II A. Sev-
eral properties of the decay-of-mixing algorithm are derived
in Sec. II B by requiring conservation of energy, angular mo-
mentum, probability, and electronic phase angle. These con-
siderations leave undetermined the following three
choices: ~i! the relaxation time matrix,~ii ! the directionŝ
~in nuclear momentum space!, called the decoherent direc-
tion, into which electronic energy is deposited or from which
it is removed as the mixing decays, and~iii ! the method for
determining~as a function of timet! the state, called the
decoherent state orK, towards which the system is decoher-
ing. ~Note that a caret denotes a unit vector.! Sections II A
and II B present the theory in the diabatic representation, and
a way of treating the adiabatic representation is given in Sec.
II C. The decay of mixing equations is presented in the den-
sity matrix formalism in Sec. II D. In Sec. II E, the previ-
ously implemented21 version of the decay of mixing algo-
rithm called the natural decay of mixing method is discussed.
In Sec. II F, we present the details of the improved decay-of-
mixing algorithm, called self-consistent decay of mixing.

II. A. Semiclassical Ehrenfest method

The Hamiltonian for the semiclassical Ehrenfest method
HSE is defined in the diabatic electronic representation as the
sum of the classical nuclear kinetic energyTN and the expec-
tation value of the electronic HamiltonianHel :

HSE5TN1^CuHeluC&, ~5!

where the electronic Hamiltonian contains the electronic ki-
netic energy and the Coulomb interactions. If the electronic
wave functionC is expanded in the diabatic basis,

C5(
k

ckuk&, ~6!

and the complex expansion coefficients are written in the
classical-like particle representation15,33 as

ck5
1

&
~xk1 ipk!, ~7!

Eq. ~5! can be written

HSE[TN1VSE, ~8!

where

VSE5(
k

nkUkk1(
k

(
k8,k

~xkxk81pkpk8!Ukk8 ~9!

and where the electronic state populationucku2 of statek is

nk5 1
2 ~xkxk1pkpk!. ~10!

The nuclear position and momentum of an SE trajectory
evolve according to classical equations of motion

Ṙ5P/m, ~11!

Ṗ5ṖSE52¹NVSE, ~12!

where the overdot indicates differentiation with respect to
time, and¹N is the nuclear gradient. The electronic variables
evolve according to the time-dependent Schro¨dinger equa-
tion, which becomes15

ẋk5 ẋk
SE5pkUkk1 (

k8Þk

pk8Ukk8 , ~13!

ṗk5 ṗk
SE52xkUkk2 (

k8Þk

xk8Ukk8 . ~14!

We note that Miller and Meyer proposed15,33 a Langer-
type modification to the SE method, in which the substitution
nk→nk1 1

2 is made in the electronic variables. The resulting
Hamiltonian is further modified such that eigenvalues of the
Hamiltonian matrix equal those obtained from the SE
method. Each trajectory, then, depends on the initial value of
the electronic phase angle in addition to the initial values of
the nuclear position and momentum. Results are obtained by
averaging over all three of these quantities. We have previ-
ously tested this method, which we call the classical electron
~CE! method, and in all cases we found it to give results that
are either similar to or worse than those obtained by the SE
method.42 We do not consider the CE method any further in
the present paper.
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II.B. Semiclassical Ehrenfest method with decay
of mixing

The decay of mixing algorithm modifies the SE equa-
tions of motion~12!–~14! such that the system decays con-
tinuously to a pure state. In particular, the equation of motion
for the nuclear position is unchanged@Eq. ~11!#, but those for
the momentum and the electronic variablesxk and pk be-
come

Ṗ5ṖSE1ṖD, ~15!

ẋk5 ẋk
SE1 ẋk

D , ~16!

ṗk5 ṗk
SE1 ṗk

D . ~17!

Several properties of the decoherence termsṖD, ẋk
D , andṗk

D

are discussed in the following subsections. First, however,
we note that the SE labels on the first terms of Eqs.~15!–
~17! refer to the local time derivative only. When one in-
cludes the decoherence terms, the trajectory immediately de-
viates from the SE one, and soẋk

SE andṗk
SE here are different

from their values along the SE trajectory.

II.B.1. Conservation of total angular momentum
and energy

The time derivative of the total angular momentum

J5R3P ~18!

can be written

J̇5Ṙ3P1R3Ṗ5
P

m
3P1R3ṖSE1R3ṖD, ~19!

where we have used Eqs.~11! and ~15!. ~Note thatṘD is
zero.! The first two terms correspond to SE motion, and the
SE method has previously been shown to conserve total an-
gular momentum.15 By requiring the decay-of-mixing
method to conserve total angular momentum, we therefore
obtain

R3ṖD50 ~20!

or, equivalently,

ṖD5F ŝ, ~21!

whereF is an undetermined scalar function andŝ is a unit
vector that lies within the nonrotating subspace of momen-
tum space: i.e.,ŝ must be chosen such that

R3 ŝ50. ~22!

The time derivative of the Hamiltonian is

Ḣ5
d

dt
~TN1V!

5
P"Ṗ

m
1V̇DM

5
P"ṖSE

m
1V̇SE1

P"ṖD

m
1V̇D, ~23!

where V̇DM is the time derivative of the classical potential
energy,

VDM5(
k

nkUkk1(
k

(
k8,k

~xkxk81pkpk8!Ukk8 , ~24!

and has been written

V̇DM5V̇SE1V̇D ~25!

using Eqs.~16! and~17!. Note that Eq.~24! differs from Eq.
~9! because thexk andpk variables in Eq.~9! evolve accord-
ing to Eqs.~13! and~14!, whereas thexk andpk variables in
Eq. ~24! evolve according to Eqs.~16! and~17!. Therefore,21

V̇D5
1

2 (
k

~xkẋk
D1pkṗk

D!Ukk1(
k

(
k8,k

~xkẋk8
D

1xk8ẋk
D

1pkṗk8
D

1pk8ṗk
D!Ukk8 . ~26!

The first two terms on the right-hand side of Eq.~23!
correspond to SE motion and conserve total energy.15 For the
decay-of-mixing algorithm to conserve total energy the sum
of the two remaining terms must equal zero, and using Eq.
~21!, we therefore obtain

F5
2V̇D

P"ŝ/m
, ~27!

and the change in nuclear momentum due to decoherence is

ṖD52
mV̇D

P"ŝ
ŝ. ~28!

Thus the right-hand side of Eq.~28! is the decoherent force.
Note thatṖD becomes singular~undefined! asP"ŝ→0 unless
this singularity is cancelled by a zero ofV̇D; this constrains
our choice of the directionŝ. We will chooseŝ in Sec. II C
such thatP"ŝ only equals zero whenPvib is the null vector. In
the semiclassical Ehrenfest method, as in an ordinary trajec-
tory, the various components ofPvib will not equal zero si-
multaneously, and hence the variablesPvib andTvib will not
pass through zero. However, in the decay-of-mixing algo-
rithm, the decoherent force can drivePvib toward zero in
some regions of space. To prevent the right-hand side of Eq.
~28! from becoming singular,V̇D must go to zero faster than
the denominator. ThusV̇D must be an explicit function of
Pvib , which, for small Pvib , varies asPvib

n with n.1. In
practice, we have found thatn52 is sufficient to prevent this
problem~we did not examine fractional values like 1.5!.

We note that Eq.~28! can be generalized to

ṖD5(
k

Ṗk
D52(

k

mV̇k
D

P"ŝk
ŝk , ~29!

whereV̇k
D is the contribution toV̇D from statek, and we have

allowed the direction of the decoherent forceŝk to depend on
the electronic statek. We will consider Eq.~29! in more
detail in Sec. II F 1.

II.B.2. First-order decay and conservation of
probability and phase angle

We assume that the decay of the electronic state popula-
tions is first order and that there is some electronic stateK
toward which the system is decohering. A set of decoherence
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timestkK is defined such that the electronic state population
nk for kÞK decays to zero at a rate of 1/tkK—i.e.,

ṅk
D52

nk

tkK
for kÞK. ~30!

To ensure conservation of probability, we set

(
k

ṅk5(
k

ṅk
SE1(

k
ṅk

D50. ~31!

The SE terms conserve probability,15 so

(
k

ṅk
D5 (

kÞK
ṅK

D1ṅK
D50, ~32!

and therefore

ṅK
D52 (

kÞK
ṅk

D5 (
kÞK

nk

tkK
. ~33!

The electronic phase angleqk is defined by

tanqk5
pk

xk
, ~34!

and the contribution to its time derivative from the decay
terms is

d

dt
~ tanqk!U

D

5
xkṗk

D2 ẋk
Dpk

xk
2 . ~35!

Requiring conservation of phase angle gives

ṗk
D

pk
5

ẋk
D

xk
. ~36!

From Eqs.~10!, ~30!, ~33!, and ~36! we can derive expres-
sions forẋk

D and ṗk
D . For kÞK,

ṗk
D52

pk

2tkK
, ~37!

ẋk
D52

xk

2tkK
, ~38!

and for stateK,

ṗK
D5

pK

2nK
(
kÞK

nk

tkK
, ~39!

ẋK
D5

xK

2nK
(
kÞK

nk

tkK
. ~40!

For later reference we note that, for anyk, the contribution of
decoherence to the electronic state population is

ṅk
D5ṅk2ṅk

SE5xkẋk
D1pkṗk

D . ~41!

After requiring a first-order decay of the electronic state
populations and enforcing conservation of energy, angular
momentum, probability, and phase angle, the remaining un-
determined parameters are the directionŝ @or the set ofŝk if
the more general Eq.~29! is used# of the energy exchange
due to decoherence and the set of decoherence timestkK .
We also need a method for determining the decoherent state
K—that is, for switching from one decoherent state to an-

other as the trajectory proceeds in such a way that on average
the ensemble of trajectories produces a statistical mixture of
pure states that agrees as well as possible with an accurate
quantum-mechanical calculation.

Putting Eqs.~37!–~40! into Eq. ~26! shows that every
term in V̇D is proportional to one or anothertkk8

21. Thus the
requirement in the previous subsection that, for smallPvib ,
V̇D varies asPvib

n with n>2 leads to a requirement that, for
small Pvib , eachtkk8 varies asPvib

2n with n>2.

II.C. Decay of mixing in the adiabatic representation

So far, we have limited our discussion to the diabatic
electronic representation. In this section, we consider apply-
ing the decay-of-mixing algorithm in a general representa-
tion that includes the diabatic and adiabatic representations
as special cases, and then we specialize to the adiabatic case.
For a general basis, the solution to the time-dependent
Schrödinger equation is22

i\ ċk5(
k8

ck8~Ukk82 i\Ṙ"dkk8!. ~42!

The coupled equations~42! reduce to the diabatic represen-
tation if dkk850, and they yield the adiabatic representation
if Ukk850 for kÞk8, in which caseUkk is calledVk . Sub-
stituting the complex expansion coefficients, Eq.~7! into Eq.
~42!, we have

ẋk
SE5(

k8
~\21pk8Ukk82xk8Ṙ"dkk8!, ~43!

ṗk
SE52(

k8
~\21xk8Ukk81pk8Ṙ"dkk8!. ~44!

The decoherent contributions to the rate of change of these
generalized coordinates are obtained using Eqs.~37!–~40!
and are added to Eqs.~43! and ~44! to obtain the overall
electronic motion by Eqs.~16! and~17!. The nuclear coordi-
nates and momenta satisfy Eqs.~11! and ~15! with

ṖSE52(
k

nk¹RUkk2(
k

(
k8,k

~xkxk81pkpk8!¹RUkk8

1(
j

(
k

(
k8

~xkxj1pkpj !Ukk8dk8 j . ~45!

In the adiabatic representation, Eq.~45! reduces to an expres-
sion derived by Tully,1 namely,

ṖSE52(
k

nk¹RVk1(
k

(
k8

ck* ck8~Vk2Vk8!dkk8 , ~46!

in which nk is defined in Eq.~10!, but here it represents the
electronic-state population in the adiabatic representation.
@Note that we corrected a sign error in Tully’s equation
~6.26!; Eq. ~46! is derived in the Appendix.# The force and
momentum derivative associated with the decoherence are
given by Eqs.~26!–~29!. Conservation of total energy and
angular momentum and conservation of density and phase
angle for electronic states in a general representation can be
proved in the same way as in Secs. II B 1 and II B 2 for the
diabatic representation, respectively.
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The advantage of the adiabatic formulation presented
here over the one presented in Ref. 23 is that the present
treatment does not require one to know the adiabatic–
diabatic transformation. The two formulations give identical
trajectories and electronic probabilities for systems with two
electronic states; one can use whichever formulation is more
convenient. For systems with more than two electronic
states, matrix elements of the nuclear kinetic energy operator
couple the adiabatic electronic states in addition to the mo-
mentum coupling that already occurs in the two-state case.
These terms are neglected in the present treatment, but are
included~nonuniquely! in the treatment in Ref. 23. This am-
biguity in the semiclassical electronic state formulation is
endemic to the formulation of the problem in which quantal
degrees of freedom are coupled to classical ones in a
classical-like framework.33 Nevertheless, Eq.~46! has the ad-
vantage that it is independent of the nonunique adiabatic-to-
diabatic diabatic transformation~the transformation is nonu-
nique because a strictly diabatic representation does not
exist36–38!. One~nonunique! way to resolve the latter ambi-
guity is to define the problem in the diabatic representation
and assume that the entire nonadiabatic coupling results from
the diabatic-to-adiabatic transformation5,36,40–44 ~retaining
the longitudinal part due to the transformation but neglecting
the remaining longitudinal part and all of the transverse
part36!, but further discussion of this aspect of the problem is
beyond our scope. We simply remark that the formulation in
this section is preferred because it is equally applicable
whether one defines the problem in a diabatic representation
where nonadiabatic coupling vanishes or in an adiabatic rep-
resentation that includes both longitudinal and transverse
nonadiabatic coupling. Other problems arise, however, if the
nonadiabatic coupling does not vanish in asymptotic regions,
and we implicitly assume that it does. We also neglect elec-
tronic angular momentum.

II.D. Density matrix formulation

So far, we have presented the decay of mixing formalism
in the particle representation of Ref. 15. It is also useful to
present the equations in density matrix language. The two
treatments give identical results.

The elements of the electronic of density matrix are

r i j 5cicj* , ~47!

whereci is defined in Eq.~7! andcj* is the complex conju-
gate ofcj . Using Eq.~7!, we obtain

Im~r i j !5 1
2 ~xj pi2xipj !,

Re~r i j !5 1
2 ~xixj1pipj !, iÞ j , ~48!

ni[r i i 5
1
2 ~xi

21pi
2!.

The time derivative of the density matrix can be decomposed
into a semiclassical Ehrenfest contribution and contribution
due to the decay of mixing force:

ṙ i j 5 ṙ i j
SE1 ṙ i j

D . ~49!

Using Eqs.~16!, ~17!, ~43!, and~44! one obtains, for the SE
contribution,

i\ṙk j
SE5(

l
~r l j @Ukl2 i\Ṙ"dkl#2rkl@Ul j 2 i\Ṙ"dl j # !,

~50!

and using Eqs.~37!–~40!, the decoherent contribution is
given by

ṙ i i
D5H 2

r i i

t iK
, iÞK,

(
j ÞK

r j j

tK j
, i 5K,

~51!

and for iÞ j ,

ṙ i j
D55

2
1

2 S 1

t iK
1

1

t jK
D r i j , iÞK, j Þk,

1

2 S 1

rKK
(
kÞK

rkk

tKk
2

1

t jK
D r i j , i 5K, j Þk,

1

2 S 1

rKK
(
kÞK

rkk

tKk
2

1

t iK
D r i j , iÞK, j 5K.

~52!

The time derivative of the nuclear momentum can be written
in density matrix notation as in Eq.~15! where

ṖSE~ t !52(
k

rkk¹RUkk2(
k

(
k8,k

~2 Rerkk8!¹RUkk8

1(
j

(
k

(
k8

~2 Rerk j!Ukk8dk8 j , ~53!

and ṖD is computed using Eq.~29! and

V̇D5(
k

ṙkk
D Ukk1(

k
(

k8,k
~2 Reṙkk8

D
!Ukk8 . ~54!

II.E. NDM

For the previously published NDM method,21 the deco-
herent direction is independent of electronic state; i.e., Eq.
~28! is used with

ŝ5
Pvib

iPvibi , ~55!

and the relaxation times are

tkk85tkk8
gap T0

Tvib
, ~56!

where

tkk8
gap[

\

DUkk8
, ~57!

DUk8k[uUk8k82Ukku ~58!

andT0 is a constant which we set equal to the total energyE
relative to the potential energy of the reactant~s! at equilib-
rium.
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The system starts in a pure state, and initially the deco-
herent state is the same as that state. The decoherent stateK
is dynamically determined at small time intervalsdt along
the classical trajectory using the fewest-switches method22

and the electronic state probabilitiesnk , which arerkk in the
density matrix formulation. For example, for a two-state sys-
tem, the probability that a trajectory switches its decoherent
state from stateK to stateK8 at time t is

PK→K85maxS 2
ṙKKdt

rKK
,0D . ~59!

The NDM method was shown to work well when tested
against the SE method and several trajectory surface hopping
methods.21 In the next section we discuss several shortcom-
ings of the NDM method and present the improved self-
consistent decay of mixing algorithm.

II.F. SCDM

II.F.1. Decoherent direction

The unit vectorsŝk determine the direction into which
energy is deposited and out of which energy is taken as the
system decoheres. Equation~55! is unsatisfactory because it
can couple the electronic energy to nuclear degrees of free-
dom arbitrarily far from the electronically nonadiabatic moi-
ety ~i.e., the ‘‘chromophore’’!, even when the nonadiabatic
coupling is large.

We note that Eq.~51! may be used to write Eq.~54! as

V̇D5 (
kÞK

V̇k
D , ~60!

where

V̇k
D5

rkk

tKk
UKK1 ṙkk

D Ukk1~ReṙKk
D !UKk

1 (
k8Þk

~Reṙkk8
D

!Ukk8 , ~61!

and so the momentum change associated with the decoher-
ence can be written a sum of terms@as in Eq.~29!#. Each
term describes the decoherence of a single statek to the
decoherent stateK—i.e.,

ṖD52 (
kÞK

mV̇k
D

P"ŝk
ŝk , ~62!

whereŝk is the direction of the decoherence associated with
statek. This decomposition is essential for incorporating the
correct mode dependence of the vibronic coupling in multi-
state systems. In order to derive a physically motivated form
for ŝk , we consider the physical origin of the state coupling.
We will do this first for the adiabatic representation and then
for the diabatic representation.

a. Adiabatic representation. The nonadiabatic coupling
drives electronic state changes in the adiabatic representation
and is given by

Ckk85~\/m!Pvib•dkk8
~ tot! , ~63!

wherePvib is the momentum associated with internal vibra-
tional motion39 and dkk8

(tot) is the total nonadiabatic coupling
vector given by

dkk8
~ tot!

5dkk81dkk8
~' ! , ~64!

in which dkk8 continues to denote the nonadiabatic coupling
due to the diabatic–adiabatic transformation anddkk8

(') is the
transverse component36 of the coupling, which is usually ne-
glected~and is always neglected in the diabatic representa-
tion; however, it is reasonable to take account of it in deter-
mining the direction ofŝ). The vectordkk8

(') is difficult to
calculate, but is associated with all components of nuclear
momentum and has a magnitude38 of O(1 a0

21), wherea0 is
a bohr. We therefore approximate

dkk8
~' !>6a0

21P̂vib , ~65!

whereP̂vib is a unitless unit vector in the direction ofPvib .
Substituting Eq.~65! into Eq. ~63! gives

Ckk85~\/ma0!~dkk8a0Pkk8
~d!

6Pvib!, ~66!

wheredkk8 is the magnitude (idkk8i) of dkk8 andPkk8
(d) is the

component ofP̂vib in the direction ofdkk8 .
We associate the first term in Eq.~66! with the direction

d̂kk8 and the second term with the directionP̂vib . Thus we
take

ŝk5ŜKk , ~67!

whereK is the decoherent state and

Ŝkk85~dkk8a0Pkk8
~d! d̂kk86PvibP̂vib!/idkk8a0Pkk8

~d! d̂kk8

6PvibP̂vibi . ~68!

The sign in Eq.~65! is arbitrary, and we choose it such that
the overlap ofdkk8 andPvib is positive and the contributions
from the two terms in Eq.~66! are additive.

Furthermore, the sign ofdkk8 , although arbitrary, is fixed
by a particular choice of phase conventions foruk& anduk8& at
the beginning of the calculation, and then those phase con-
ventions are used continuously throughout the calculation.

When we use Eq.~67! as the decoherent direction for
coupling statek to the decoherent stateK, then, in regions
where the surfaceK is strongly coupled to any other surface
k, energy transfer due to decoherence takes place alongdKk ,
which may be justified by analogy with surface hopping,
where it has been shown39,45,46 that instantaneous surface
transitions due the strong nonadiabatic coupling between
statesK and k involve energy adjustments alongdKk . In
regions away from the strong-coupling region~i.e., in re-
gions where alldKk are very small!, all internal vibrations of
the system contribute equally to decoherence.

Both dkk andPvib are within the nonrotational subspace,
and therefore momentum adjustments alongŝk conserve total
angular momentum, as discussed in Sec. II B 1.

b. Diabatic representation. Since the gradient is an anti-
Hermitian operator, Eq.~2! shows thatdkk852dkk8 . With
this in mind it is easy to see that Eq.~67! reduces to
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ŝk5
6~d12a0P12

~d!d̂126PvibP̂vib!

id12a0P12
~d!d126PvibP̂vibi

~69!

in the two-state case, where the first6depends on whetherK
is 1 or 2, but cancels in Eq.~29!, and the next two6are
determined by the convention after Eq.~68!. When there are
only two electronic statesd12 provides a meaningful direc-
tion for the decoherent force in an adiabatic representation,
as discussed above, and since there is only one pair of states,
also in the diabatic representation. Based on these consider-
ations, we generalize the above treatment toN diabatic states
as follows.

In the rest of this section, letk andk8 represent adiabatic
states andj and j 8 represent diabatic states. The nonadiabatic
coupling vectordkk8 is the vector coupling between two
adiabatic statesk andk8, each of which is, in general, some
linear combination of all of the diabatic statesj. The diabatic
potential energy matrix~whose elements areU j j 8) is an N
3N symmetric matrix. For any pair of diabatic states, we
can construct the potential energy submatrix

Uj j 8
~2!

5S U j j U j j 8

U j j 8 U j 8 j 8
D , ~70!

which controls the direct coupling between these two states.
An effective couplingdj j 8

(2) may be computed usingUj j 8
(2) and

its gradient, eigenvectors, and eigenvalues according to the
usual formula for a two-state system.39 To obtainŜj j 8 we use
Eq. ~68!, replacing the adiabatic nonadiabatic couplingdkk8
with the effective couplingdj j 8

(2) .

II.F.2. Decay-of-mixing time

The dependence of the relaxation times in Eq.~56! on T0

is unsatisfactory, and in the original paper21 we identified the
development of a more microscopically justified approxima-
tion for tkk8 as a direction for further study. Although, as
pointed out in the Introduction, the ultimate justification for
tkk8 must be comparison of the results of the semiclassical
calculations employing the new algorithm to accurate quan-
tum dynamics, we believe that the argument given next pro-
vides a more self-consistent way to introduce the vibrational
kinetic energy.

The time-dependent electronic wave function may be
written as

C5(
k

ck~ t !fk„R~ t !…e2 iU kk„R~ t !…t/\, ~71!

and the probability density is

uCu25(
k

uck~ t !u2ufk„R~ t !…u2

1(
k

(
k8Þk

ck* ~ t !ck8~ t !fk* „R~ t !…

3fk8„R~ t !…e2 iDUk8k„R~ t !…t/\. ~72!

Therefore, in the reduced electronic density matrix, the
nuclear coordinates are integrated out and the differing
nuclear motions of the components of the wave packet asso-

ciated with electronic statesk andk8 cause the element of the
reduced density matrix associated with the coherenceck* ck8
to decay because of reduced overlap of the spatial compo-
nents and because of destructive interference of the phase
factors in Eq.~72!. The equation shows that the time scale
associated with this phase interference istkk8

gap defined in Eq.
~57!. Except whenDUkk8 is very small, this time scale is
much faster than the time scale for nuclear overlap decay,
and it is the fastest time scale in the system. A central as-
sumption of the SCDM method is that this time scale pro-
vides a lower bound to the decay-of-mixing timetkk8 . The
lower bound character oftkk8

gap could also be justified by the
time–energy uncertainty relation. In this context a first ap-
proximation for the relaxation time is

tkk8
~1! '2tkk8

gap
„R~ t !…, ~73!

where the factor of 2 accounts for the fact that a trajectory
should traverse a complete passage of a strong-coupling re-
gion with maximum coherence,47,48 and the decay-of-mixing
time must allow significant coherence over both the ap-
proach and recession from the point of maximum interaction,
hence the factor of 2.

In Sec. II A, we pointed out that, for smallPvib , a self-
consistent treatment requires that the decoherence rate con-
stant tkk8

21 should tend to zero at least as fast asPvib
2 . To

incorporate this requirement, we derive an alternative form
of the relaxation rate matrix. At any given geometryR, we
associate the self-consistent trajectory with two virtual tra-
jectories, one obtained by a virtual hop up to statek8 and one
by a virtual hop down to statek ~the virtual hops being
defined in the usual sense of trajectory surface hopping!. In
semiclassical methods, one assumes conservation of nuclear
angular momentum during hops as well as along trajectories.
Since the instantaneous rotational kinetic energyTrot depends
only on local geometry~through the instantaneous moments
of inertia! and on angular momentum, it is conserved during
hops. Therefore, the decomposition of the total energy of the
virtual trajectories into kinetic and potential energy compo-
nents may be written

E5Tvib,k1Trot1Ukk ~74!

and the virtual vibrational kinetic energies may be used to
define vibrational momenta after the virtual hop onto each
surface:

Tvib,k5
Pvib,k

2

2m
. ~75!

Since total energy is also conserved during a hop, one can
write

DUkk85uTvib,k2Tvib,k8u5S P̄vib

m
DDPvib,kk8 , ~76!

where

P̄vib5~Pvib,k1Pvib,k8!/2 ~77!

and

DPvib,kk85uPvib,k2Pvib,k8u. ~78!
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To make this self-consistent with the SCDM trajectory, we
replace the unweighted average momentum in Eq.~77! by
the current self-consistent field average, which isPvib—i.e.,
the instantaneous vibrational momentum along the current
SCDM trajectory. Thus we may use

DUkk8
8 5S Pvib

m D uPvib,k2Pvib,k8u, ~79!

which, combined with Eqs.~57! and ~73!, yields an alterna-
tive approximation

tkk8
8 5

2\m

PvibuPvib2Pvib,Ku
. ~80!

A priori, any expression of the form

tkk85~tkk8
8 !n~tkk8

gap
!12n ~81!

is equally suitable, although it seems reasonable to limit con-
sideration to the smallest suitable value ofn that is consistent
with the decay of mixing formalism. To accomplish this we
note thattkk8

gap is independent ofPvib , but tkk8
8 ;Pvib

21, and
therefore Eq.~81! yieldstkk8;Pvib

2n . As explained above, the
decay of mixing formula requiresn>2, and so we choose
n52. This yields an alternative expression

tkk8
~2!

5
\mDUkk8

TvibuPvib,k2Pvib,k8u
. ~82!

This is not well defined when the virtual hop to the upper
surface is forbidden by the conservation of energy or linear
momentum, and so we consider a third approximation given
by the limit of Eq.~82! whenPvib,k@Pvib,k8 . This yields

tkk8
~3!

5
\

2Tvib
. ~83!

Both tkk8
(1) and tkk8

(3) are well defined in all cases, but
neither of them alone satisfies all the physical constraints we
require fortkk8 . However, an arithmetic average does have
the correct self-consistent~SC! properties, and so we use
that, which yields

tkk8'tkk8
SC [

\

DUkk8
1

\

4Tvib
. ~84!

This is a reasonable result. The first term in Eq.~84! may be
considered as a lower limit fortkk8 in an uncertainty prin-
ciple sense, and it is reasonable that this provide a lower
bound for Eq.~84!. Furthermore, at an intersection of the
potential energy surfaces, the decoherence time should be
large so that the system traverses a single pass of a strong
interaction region coherently, and the first term of Eq.~84!
also enforces that. The second term has the effect that the
decoherence term decreases to its lower limit whenTvib

→`, which is reasonable since the nuclei traverse the nona-
diabatic interaction region infinitely rapidly, while in the
other limit (Tvib→0), tkk8 becomes infinite because the
nuclear motion~which is ultimately responsible for decoher-
ence! is infinitesimal. Furthermore, Eq.~84! satisfies the re-
quired limiting form of Pvib

22 for small Pvib , and all refer-
ences to virtual hops~which were used in the derivation, but
without requiring any details such as specification of the

hopping vector! are canceled out in the final expression.
Based on these considerations we labeltkk8

SC as the fastest
self-consistent time scale in the system. Clearly, the deriva-
tion of Eq.~84! is not rigorous, and hence the adoption of the
geometric dependence oftkk8

SC that is contained in equation is
a basic assumption of the method. The usefulness of this
assumption will be tested by comparing the predictions of
the new theory with various scale factors to accurate
quantum-mechanical dynamics calculations.

At this point we recall a distinction emphasized in the
Introduction: namely, the difference between the physical
time scale of decoherence and the algorithmic time over
which decay of mixing should occur so that a semiclassical
ensemble of trajectories best simulates the evolution of a
coherent wave packet. In deriving Eqs.~73! and ~84!, we
focused attention on the fastest time scale in the system,
which is the first term on the right side of Eq.~85!. We now
reiterate an important lesson of the work of Parlant and
Gislason47 and Thachuket al.:48 namely, that one obtains
more accurate results if one integrates the Ehrenfest equa-
tions for the electronic amplitudes—i.e., Eqs.~13! and
~14!—without interruption through each complete passage of
a strong interaction region. Including the decay of mixing
terms interferes with this coherent completes passage, and
therefore we recognize two competing factors affecting the
optimal decoherence time for the SCDM algorithm. Use of
Eq. ~84! gives the fastest possible self-consistent decoher-
ence so that energy transfer between electronic degrees of
freedom and nuclear degrees of freedom occurs in the region
of strong coupling, which is physically reasonable. But use
of this fastest possible decoherence countervenes the need
for coherent complete passage of a strong coupling region.
We therefore introduce a coherency factorC that makes the
system more coherent, and we set

tkk85Ctkk8
SC . ~85!

The physical interpretation of the constantC is that it repre-
sents the factor by which first-order decay of mixing in the
SCDM simulation is slower than the fastest self-consistent
time scale in the system.

II.F.3. Decoherent-state switching probability

The NDM switching probability in Eq.~59! is defined in
such way that when the decoherent state isK, the switching
probability is also calculated from the decoherentK-state
electronic density. If the decoherent state continues to beK,
then nK will approach unity and the densities in the other
electronic states will tend to zero. This favors the current
decoherent state because the contribution toṅK from deco-
herence is always positive. Therefore the NDM switching
probability is unsatisfactory. The simplest modification of the
NDM switching probability that remedies this problem is to
replace Eq.~59! by
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PK→K85maxS 2
~ ṙKK2 ṙKK

D !dt

rKK
,0D

5maxS 2
ṙKK

SEdt

rKK
,0D . ~86!

The generalization of Eq.~86! to more than two states is
straightforward, and the resulting equations are analogous to
those obtained when generalizing Eq.~59!, as in Ref. 22.
When the switching probability is calculated from Eq.~86!
or from its multistate version, the method is called self-
consistent decay of mixing.

III. TEST CASES

We test the proposed semiclassical trajectory algorithms
against accurate quantum-mechanical calculations using the
previously presented42,43 MXH and YRH families of model
potential energy matrices~PEMs!. Both of these PEMs are
defined in a diabatic14,36,49 representation by their diagonal
potential energy surfaces and their diabatic coupling surface
and describe electronically nonadiabatic atom–diatom colli-
sions of the form

A* 1BC~n, j !→ HA1BC~n9, j 9!,
B1AC~n8, j 8!, ~87!

where (A,B,C)5(M,H,X) and ~Y, R, H! for the MXH and
YRH systems, respectively; the asterisk indicates electronic
excitation, and the primes on the diatomic vibrationaln and
rotational j quantum numbers indicate that these quantities
need not be conserved. Quantum-mechanical calculations
have been carried out42,43using these model systems for sev-
eral different initial conditions and total energies, and we
consider a subset of the cases here. We will label the initial
conditions by the total energyE given in eV and the initial
rotational state j of the diatomic molecule@i.e., by
(E/eV,j )]. For all of the cases considered here, the diatom is
initially in its ground vibrational state~i.e., n50), and the
total angular momentum of the system is zero. In total, we
will consider nine cases involving three surfaces of the MXH
type and three cases involving two surfaces of the YRH type.

The YRH PEMs feature weakly coupled, nearly parallel
potential energy surfaces in the entrance valley~i.e., as Y*
approaches RH! and may be considered Rosen–Zener–
Demkov systems.50–52The masses of the Y, R, and H atoms
are 10, 6, and 1.007 83 amu, respectively. Three YRH cases
are included in the test set~where ‘‘case’’ is used to denote a
specific member of the YRH or MXH family—i.e., a specific
PEM parametrization—coupled with a specific set of initial
conditions!: the YRH~0.1! parametrization with the~1.10,
0! initial conditions and the YRH~0.2! parametrization with
the ~1.02, 0! and ~1.10, 6! initial conditions. Details of the
YRH parametrizations and initial conditions are given in
Ref. 43. This subset of three YRH cases was used in place of
the previously published43 set of 12 YRH cases because we
showed for a subset of the methods tested that one draws
reasonably similar conclusions from a subset, and so it is not
necessary to consider all 12 cases to test the methods, espe-
cially considering the higher expense53 of studying weakly
coupled systems. The three YRH cases included in the

present study were selected such that trends in error esti-
mates obtained using the subset of three YRH cases were
similar to those obtained with the full set of 12 YRH cases
for several previously published semiclassical results43 while
maintaining some variety in the test set.

The MXH PEMs feature a narrowly avoided crossing
and a localized region of strong coupling and may be con-
sidered Landau–Zener–Teller systems.54–57 The masses of
the M, H, and X model atoms are 6.046 95, 1.007 83, and
2.015 65 amu, respectively. The SB~strong broad!, SL
~strong localized!, and WL~weak localized! parametrizations
of the MXH system with the~1.10, 0!, ~1.10, 1!, and~1.10,
2! initial conditions were included in the test set for a total of
nine MXH cases. Details of the MXH parametrizations and
initial conditions are given in Ref. 21.

The quantum-mechanical observables for the YRH and
MXH parametrizations considered here exhibit an oscillatory
structure as functions of scattering energy.42,43 We have pre-
viously found that semiclassical results depend only slowly
on energy.42,43 It is therefore desirable to compare the semi-
classical results obtained at a single-scattering energy to the
average quantum-mechanical value obtained over a range of
energies. Quantum-mechanical calculations were performed
at seven energies at and around the nominal scattering ener-
gies for YRH~see the supporting information of Ref. 43 for
details! and 14 energies at and around the nominal scattering
energy for MXH ~see the supporting information of Ref. 42
for details!. The results of the quantum-mechanical calcula-
tions were averaged to obtain the quantum results used here.
In most cases, the values obtained by averaging are similar to
the values obtained at the nominal scattering energy.

IV. SEMICLASSICAL TRAJECTORY CALCULATIONS

The coordinates and momenta of the nuclei and the elec-
tronic state populations were integrated using an adaptive
integration algorithm that was designed for use with semi-
classical trajectory calculations.39 The algorithm uses a
Bulirsch–Stoer integrator with polynomial extrapolation58,59

modified such that the integrator is prohibited from stepping
over local peaks and minima in the electronic probabilities.
For the present calculations, the integration parameters59

were given the following values:«BS510212Eh (1Eh

527.211 eV) and hmin51024 a.u. (1 a.u.52.4189
31022 fs), which give converged results for the YRH and
MXH systems. The trajectories begin the simulation with the
lone atom~Y in the case of YRH and M in the case of MXH!
separated from the center of mass of the diatom by 35a0

(1a050.529 18 Å) for the MXH cases and by 20a0 for the
YRH cases, and the simulation was ended when the product
fragments were separated by at least 30a0 for both systems.
We have verified that the results of the semiclassical simula-
tions do not change when these distances are increased.

The results are sometimes sensitive to the method used
to computePK→K8 in Eqs.~59! and~86!. One obtains better
convergence with respect to decreasingdt if ṙkk(t)dt is re-
placed byrkk(t)2rkk(t2dt).

In addition to testing the new SCDM method, we will
present the results of semiclassical trajectory calculations
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employing several other methods15,19,21–23,60–62for compari-
son. In particular, the methods tested are listed and explained
in Table I.

Note that each method in Table I can be implemented in
the adiabatic representation~e.g., FSTU¹V-A !, the diabatic
representation~e.g., FSTU¹V-D!, or the Calaveras County
representation~e.g., FSTU¹V-CC!. The Calaveras County
~CC! representation13 involves choosing for each case~po-
tential energy surfaces and couplings, masses, energy, initial
vibrational–rotational state! between the A or D representa-
tion on the basis of which representation leads to the fewest
number of hop attempts per trajectory~on average! in a TFS
calculation. We previously presented arguments13,19 that this
is the best representation for trajectory surface hopping, and
we also propose it as a reasonable way to choose a represen-
tation in decay-of-mixing calculations. For the 12 cases con-
sidered here, for 9 of them~SB, SL, and YRH! the CC rep-
resentation turns out to be the adiabatic one, and only for the
three WL cases does it turn out to be the diabatic represen-
tation.

We note that the numerical method used for NDM and
NDM/SCS ~see Table I for method acronyms! adiabatic cal-
culations is that presented in Ref. 23, whereas the formula-
tion used for the NDM/SCDT and SCDM adiabatic calcula-
tions is that presented in the present paper; however, the
results are independent of this methodological choice. The
semiclassical Ehrenfest method yields the same results in the
diabatic representation or in the adiabatic representaion of
Ref. 23. For a two-state case, results in the diabatic represen-
tation agree with those obtained using either adiabatic repre-
sentation. So, for the two-state systems considered here no
representation needs to be specified.

The semiclassical trajectory calculations yield eight
quantities that will be compared to the accurate quantum-
mechanical results summarized in Sec. III. In particular, we
calculatePR, the probability of reaction, which is the lower
outcome in Eq.~87!; PQ, the probability of quenching,
which is the top outcome in Eq.~87!; PN , the total probabil-

ity of a nonadiabatic event, which is the sum ofPR andPQ;
FR, the reactive branching fraction, which is defined as
PR/PN ; ^n8&, the mean value ofn8 in Eq. ~87!; ^ j 8&, the
mean value ofj 8 in Eq. ~87!; ^n9&, the mean value ofn9 in
Eq. ~87!; and ^ j 9&, the mean value ofj 9 in Eq. ~87!.

For the SE calculations, the final-state analysis is carried
out using both the histogram~H! and linear smooth sampling
~LSS! methods~without taking account of whether states are
closed!, as presented previously.19,62 For all other calcula-
tions we employed only histogram analysis.

V. RESULTS

First, we gathered statistics to compare the time-
averaged decoherence rates calculated by the original NDM
approximation with Eq.~56! to those calculated with the new
self-consistent expression, Eq.~85!. The decoherence time is
not meaningful in the initial and final legs of the trajectories
~asymptotic regions! where the coupling is essentially zero.
Thus we only averaged over portions of the trajectories
where 0.02<nk<0.98. To average the rates, we calculated
the time average of 1/t12 for this portion of each trajectory
and then averaged these values over the ensemble of trajec-
tories. Then the result is reexpressed in time units by taking
a reciprocal:

t̄[
1

^1/t12&
. ~88!

The resulting values, called the time-averaged decoherence
times, are shown for three cases in Table II.

Table II shows that the original formula~used in NDM!
gives time-averaged decoherence times of 2.5–8 fs in the
adiabatic representation and 2.9–10 fs in the diabatic repre-
sentation. The self-consistent formula is less dependent on
representation, and usingC51, which corresponds to the
shortest self-consistent decoherence time, gives very fast de-
cay of mixing, with t̄51.5– 3.2 fs. These values then in-
crease roughly proportional toC, becoming 13–27 fs for
C59.

TABLE I. Semiclassical trajectory methods tested in this paper.

Method Ref. Explanation

TFS– 22 The original version of Tully’s fewest switches~TFS!
algorithm for trajectory surface hopping. The minus
denotes that the trajectory is reflected at frustrated hops.

FSTU¹V 60, 61 The fewest switches with time uncertainty~FSTU!
algorithm for trajectory surface hopping. The¹V suffix
denotes that frustrated hops are treated by the gradV
algorithm.

SE–H 15, 19, 62 Semiclassical Ehrenfest method with histogram analysis
for final states

SE–LSS 15, 19, 62 Semiclassical Ehrenfest method with linear smooth
sampling analysis for final states

NDM 21, 23 Original natural decay of mixing method
NDM/SCDT Present NDM with self-consistent~SC! direction ~D! and time

~T!—i.e., Eqs.~67! and ~85! instead of Eqs.~55! and ~56!,
respectively

NDM/SCS Present NDM with self-consistent~SC! switching ~S!—i.e., Eq.
~86! instead of Eq.~59!

SCDM Present Self-consistent decay of mixing as presented in Sec. II F of
the present paper
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Limiting the averages to only quenching trajectories or
only the subset of reactive trajectories or the subset of
quenching trajectories did not produce any systematic differ-
ences for MXH with time-averaged decoherence times for
each of the subsets sometimes being within;10% of those
for the full set and being sometimes smaller and sometimes
larger than for the full set. For YRH, though,t̄ for reactive
trajectories is as much as 48% less than the time average
over all trajectories andt̄ for quenching trajectories is up to
36% less than the time average over all trajectories.

In order to test the accuracy of the methods we com-
puted the unsigned relative error in each of the eight quanti-
ties specified in Sec. IV:

« ia5
uQia

traj2Qia
quantalu

Qia
quantal , ~89!

whereQia is quantity i for test casea. The first four quan-
tities are called branching probabilities, and the mean un-
signed error in these is

«̄a~prob!5
1

4 (
i 51

4

( « ia , ~90!

whereas the next four quantities are called final-state mo-
ments and the mean unsigned error in these is

«̄a~mom!5
1

4 (
i 55

8

« ia . ~91!

These were then averaged over the nine MXH cases and
converted to percentage errors

PE~X;MXH !5
100

9 (
a51

9

«̄a~X! ~92!

and similarly for the three YRH cases

PE~X;YRH!5
100

3 (
a510

12

«̄a~X!, ~93!

whereX515 ‘‘prob’’ and X525 ‘‘mom.’’ Finally, we aver-
aged the two types of errors and two types of systems to
obtain ‘‘average’’ mean unsigned errors

PE~average!5
1

2 (
X51

2
PE~X,MXH !1PE~X,YRH!

2
.

~94!

We can also average in the other order, obtaining

^« i&5
(a5b

g « ia

g2b11
. ~95!

For a complete set of results, includingQia
quantalandQia

traj for
all of the semiclassical methods and test cases considered in
this paper, as well aŝ« i& for MXH ( b51, g59) and YRH
(b510,g512) and various other averages of these quanti-
ties, see the supporting information.63 Here we focus on the
more highly averaged percentage errors of Eqs.~92!–~94!
because these are sufficient to test the performances of the
methods. These percentage errors are given in Tables III
and IV.

Table III is a test of how the accuracy depends onC. We
see that the average percentage errors decrease considerably
whenC is increased from 1 to 3, and they further decrease as
C is increased to 6, but the results forC56 andC59 are
similar. For YRH, the error in the moments increases with
increasingC, but the opposite trend is found for MXH. For
YRH the errors in the probabilities decrease systematically
asC is increased from 1 to 9, whereas for MXH they show a
minimum atC56. If one were to continue to increaseC to
`, the probabilities should tend to the EH–LSS values, and
the moments should become inaccurate~since energy would
be transferred into or out of electronic degrees of freedom
only very slowly in the distant post-collision asymptotic re-
gion where the coupling is essentially zero!.

TABLE II. Average decoherence timest ~in fs!.

Method C Rep.

MXH
SB

j 52

MXH
WL
j 51

YRH
0.2

1.02 eV, j 50

NDM ¯ A 2.5 3.7 8.0
D 3.3 2.9 10

NDM/SCDT 1 A 1.5 2.4 2.3
1 D 1.8 1.8 3.2
3 A 4.5 5.5 7.7
3 D 5.3 4.7 9.1
6 A 8.9 9.7 16
6 D 10. 9.0 18
9 A 13 14 27
9 D 15 13 27

NDM/SCS ¯ A 2.5 3.7 7.6
D 3.4 2.9 11

SCDM 1 A 1.5 2.7 2.3
1 D 1.9 1.8 3.2
3 A 4.5 5.7 7.3
3 D 5.4 4.7 9.2
6 A 8.9 9.7 16
6 D 10. 8.9 18
9 A 13 14 27
9 D 15 13 27

TABLE III. Mean unsigned relative errors~%! in branching probabilities
and final-state moments.

Method C Rep.

MXH YRH

Averageprob mom prob mom

NDM/SCDT 1 A 63 19 63 26 43
1 D 45 20 164 27 64
3 A 42 24 41 27 34
3 D 32 21 191 29 68
6 A 34 23 30 28 29
6 D 33 21 178 31 66
9 A 39 22 22 29 28
9 D 39 19 154 34 61

SCDM 1 A 51 27 29 25 33
1 D 43 19 249 29 85
3 A 32 25 34 25 29
3 D 31 21 135 31 54
6 A 28 24 29 27 27
6 D 33 21 90 33 44
9 A 34 22 24 28 27
9 D 37 19 66 37 40
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All things considered, the optimum value ofC is prob-
ably in the range 6–9. We will useC59 since Table III
shows this is slightly better thanC56 on average.

An interesting aspect of the results in Table III is that the
dependence on choice of representation gets smaller as C
increases. This is reasonable since in the Ehrenfest limit,C
5` and the results are fully independent of representation.

Table IV compares the performance of the SCDM results
with C59 to previously available methods and to two meth-
ods intermediate between NDM and SCDM. We will next
consider these result in the order that they appear in the table.

The TFS– method defines a useful base line for testing
the accuracy of proposed improved methods. TFS– shows
reasonable accuracy in both representations for MXH, but
very poor accuracy in the diabatic representation for YRH.
This is probably a good place to explain why representation
independence is important. First, ‘‘for general multidimen-
sional problems, the evaluation of the optimal representation
poses serious numerical problems.’’64 Second, even if one
restricts oneself to choosing between the adiabatic and diaba-
tic representations, it is not always possible to predict~when
the accurate quantal results are unavailable! which represen-
tation is preferred. Third, and even more important, is that
for complex systems there could be regions of configuration
space in which the adiabatic representation is preferred, but
for the same system with the same initial conditions, there
could be other regions of configuration space where the di-
abatic representation is more natural. The results for general
complex systems should be much more reliable if one has a
method that yields accurate results in both representations.

The next method in Table IV, FSTU¹V, is, as
expected60,61 more accurate than TFS–. Encouragingly, its
accuracy is also less dependent on representation, but the
YRH probabilities still have large errors when this system is
treated diabatically.

The trajectories of the SE method, unlike those of the
surface hopping and decay-of-mixing methods, do not end in
a pure electronic state. This causes the amount of energy
available for translation, rotation, and vibration to be un-
physical, and this is reflected in the large errors in the rota-
tional and vibrational moments. One can somewhat amelio-
rate these errors by histogramming, but this can significantly
raise the errors in the probabilities.

The next method in the table is NDM. On average NDM
is already better than TFS–, FSTU¹V, and SE. Not only are
the results better than all three of these previous methods, but
the accuracy is also less dependent on representation. This
good performance is one reason why we decided to further
explore the DM approach, leading to the present paper.

Moving from NDM to NDM/SCDT or NDM/SCS cor-
responds to adding the first two or the third of the three
improvements of the present paper. It is very encouraging
that when either subset of these improvements—namely, the
direction of energy release and the geometry dependence of
the decoherence time~in NDM/SCDT! and making the
switching algorithm consistent with time-dependent Hartree
theory~in NDM/SCS!—is introduced individually, the accu-
racy improves very significantly.

Finally, Table IV shows even more improvement when
all three self-consistent improvements are introduced in the
full SCDM method. In fact, looking back at Table III for a
moment, even the less optimum value ofC56 provides bet-
ter accuracy than NDM/SCS or NDM/SCDT~with any value
of C!, and even the far-from-optimum value ofC53 is bet-
ter than the original NDM, which was our best method prior
to the present paper.

We do not have a good theoretical reason for choosing a
particular value ofC. The results presented here, along with
extensive~unpublished! tests on one-dimensional model sys-
tems, show that the results usually improve asC is increased
from 1 to 6, but show little change from 6 to 9. ThusC
56 – 9 seems to be a stable region, and we recommend
choosingC in this region. That is we wantC to be the small-
est value that gives accurate state populations so that energy
release occurs mainly in the strong-coupling region. If we
makeC too large, the energy transfer may be delayed to a
less strongly coupled region, which is unphysical. This gives
insight into a limitation of the semiclassical Ehrenfest
method, which is analogous toC5`. If, on the contrary, we
makeC too small, the electronic amplitudes are typically not
treated as coherent over even a single transversal of a strong-
coupling region, and the state probabilities evolve less self-
consistently and~according to our tests! less accurately. This
gives insight into a limitation of the fewest-switches trajec-
tory surface hopping method, which is analogous toC50 at
the places here hops occur. The surface hopping method of
Parlant and Gislason6,7,47 attempts to remove this limitation,
but at the cost of requiring one to rerun certain portions of
the trajectory.

VI. CONCLUDING REMARKS

In this article, we modified the natural decay of mixing
algorithm in three ways to make the method more consistent
with the time-dependent Hartree method. At the same time

TABLE IV. Mean unsigned relative errors~%! in branching probabilities
and final-state moments.

Method C Rep.

MXH YRH

Averageprob mom prob mom

TFS– ¯ A 56 17 40 46 40
¯ D 46 18 458 55 144
¯ CC 53 18 40 46 39

FSTU¹V ¯ A 53 18 27 46 36
D 43 18 202 62 81

CC 48 17 27 46 35
SE–H ¯ all 50 34 98 47 72
SE–LSS ¯ all 51 30 68 83 75
NDM ¯ A 53 27 36 23 35

D 36 24 211 23 73
CC 48 27 36 23 33

NDM/SCDT 9 A 39 22 22 29 28
9 D 39 19 154 34 61
9 CC 41 20 22 29 28

NDM/SCS ¯ A 48 26 28 21 31
¯ D 36 22 117 24 50
¯ CC 45 26 28 21 30

SCDM 9 A 34 22 24 28 27
9 D 37 19 66 37 40
9 CC 38 21 24 28 28
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we retained the key concept of first-order decay of mixing,
which is required to obtain physical final states. The resulting
new method, called self-consistent decay of mixing~SCDM!,
may be regarded from two different points of view. On the
one hand, it corresponds to including decay of mixing in the
time-dependent Hartree method so that each trajectory has a
physical final electronic state and corresponds to a reason-
ably unmixed state at the start of each traversal of successive
transversals of the strong-coupling regions in a single trajec-
tory. On the other hand, the algorithm corresponds to
smearing-out a trajectory surface hop so that it occurs no
faster than the fastest self-consistent time scale in the system,
rather than treating it as instantaneous. This SCDM method
is tested against accurate quantal dynamics for 12 cases on 5
different sets of potential energy surfaces. It is very encour-
aging that the theoretical improvements, whether introduced
separately or together, result in improved agreement, on av-
erage, with the accurate quantum-mechanical results~see the
last column of the last three rows of Table IV!. In the process
we have further improved the reliability of semiclassical tra-
jectory methods for treating non-Born–Oppenheimer dynam-
ics, and we believe that our method should be very useful for
simulations of photochemical reactions.

Although our explicit attention has been restricted to
treatments where all electronic degrees of freedom are
treated quantum mechanically and nuclear degrees of free-
dom are treated classically~or quasiclassically!, semiclassi-
cal Ehrenfest-like methods have also been used to treat a
subset of nuclear motion quantum mechanically,8,18,20,65,66

and the SCDM method for combining quantum mechanics
and classical mechanics may also be useful for that case.
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APPENDIX: DERIVATION OF EHRENFEST
HAMILTONIAN IN THE ADIABATIC CASE

In the adiabatic representation,Ukk850 if kÞk8 and
Ukk5Vk . Therefore, from Eq.~8!,

ḢSE5Ṙ"Ṗ1(
k

nkV̇k1(
k

ṅkVk , ~A1!

where we used the fact thatP5mṘ, and an overdot denotes
a time derivative. Semiclassically, we have

V̇k5Ṙ"“RVk , ~A2!

and using Eqs.~10!, ~43!, and~44! yields

ṅk52S xk(
k

xk8Ṙ"dkk81pk(
k8

pk8Ṙ"dkk8D . ~A3!

Substituting Eqs.~A2! and ~A3! into Eq. ~A1! yields

ḢSE5Ṙ•S Ṗ1(
k

nk¹RVk

2(
k

(
k8

~xkxk81pkpk8!Vkdkk8D . ~A4!

Since energy must be conserved, this must equal zero. Since
Ṙ is not zero, in general,

Ṗ52(
k

nk¹RVk1(
k

(
k8

~xkxk81pkpk8!Vkdkk8 .

~A5!

Using Eq.~7! and the skew symmetric character ofdkk8 , one
can show that Eq.~A5! agrees with Eq.~46!.

A key element in the derivation presented here and in
Ref. 1 is the use of the semiclassical approximation Eq.~A2!.
Reference 15 does not involve this semiclassical approxima-
tion, and hence the adiabatic formulation of Ref. 23, because
it is based on Ref. 15, does not require it either.
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